

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER		CANDIDATE NUMBER			
CAMBRIDGE INTERNATIONAL MATHEMATICS 0607/02					
CAMBRIDGE I	INTERNATIONAL MATHEMATICS	0607/02			
CAMBRIDGE I Paper 2 (Exten	INTERNATIONAL MATHEMATICS	0607/02 May/June 2009			
CAMBRIDGE I Paper 2 (Exten	INTERNATIONAL MATHEMATICS	0607/02 May/June 2009 45 minutes			
CAMBRIDGE I Paper 2 (Exten	INTERNATIONAL MATHEMATICS nded) swer on the Question Paper	0607/02 May/June 2009 45 minutes			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a pencil for any diagrams or graphs.

DO NOT WRITE IN ANY BARCODES

Answer all the questions.

CALCULATORS MUST NOT BE USED IN THIS PAPER.

All answers should be given in their simplest form.

You must show all the relevant working to gain full marks and you will be given marks for correct methods even if your answer is incorrect.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 40.

For Examiner's Use					

This document consists of **8** printed pages.

Formula List

$ax^2 + bx + c = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
inder of radius r, height h.	$A = 2\pi rh$
ne of radius r, sloping edge l.	$A = \pi r l$
here of radius r.	$A = 4\pi r^2$
area A, height h.	$V = \frac{1}{3}Ah$
ius r, height h.	$V = \pi r^2 h$
r, height h.	$V = \frac{1}{3}\pi r^2 h$
S <i>r</i> .	$V = \frac{4}{3}\pi r^3$
h	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cos A$
	$ax^{2} + bx + c = 0$ inder of radius <i>r</i> , height <i>h</i> . the of radius <i>r</i> , sloping edge <i>l</i> . there of radius <i>r</i> . the ra

a

Area =
$$\frac{1}{2}bc\sin A$$

В

C

4	Write the following as algebraic expressions.(a) One-third of the sum of p and q.			For Examiner's Use
	(b) The square root of the product of x and y.	wer (a)	 [1]	
	Ansı	wer (b)	 [1]	
5	List the elements of the following sets. (a) $A = \{x x \in \mathbb{Z} - 4 \le x \le 1\}$			
	(h) II (h h=2, I h h h) Ansi	wer (a)	 [1]	
	(b) $B = \{\text{prime numbers between 25 and 35}\}$	wer (b)	 [1]	
	(c) $C = \{x x \in \mathbb{R}, x = 4\}$			
	Ans	wer (c)	 [1]	
6	 (a) Write as a single logarithm. log6 + log3 - log2 			
	(b) Simplify	wer (a)	 [1]	
	(b) Simplify. $\sqrt{98} - \sqrt{50} + \sqrt{8}$			
	Ans	wer (b)	 [2]	

- 9 Solve the simultaneous equations.
 - 2x + 3y = 75x 4y = -17

Answer x =

$$y = [4]$$

For Examiner's

Use

10 Make *t* the subject of the formula.

$$y = \frac{a}{t-2}$$

Answer t = [3]

Question 12 is on the next page.

https://xtremepape.rs/

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.